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Abstract

Blockchains have emerged as a potential mechanism to
enable immutable and consistent sharing of data across
organizational boundaries. While much of the discussion
on blockchains to date has been structured around public
versus permissioned blockchains, both of these architectures
have significant drawbacks. Public blockchains are energy
inefficient, hard to scale and suffer from limited throughput
and high latencies, while permissioned blockchains depend
on specially designated nodes, potentially leak meta-
information, and also suffer from scale and performance
bottlenecks.
This paper introduces autonomous blockchains, a new

blockchain architecture based on free-standing, immutable,
eidetic databases that implement independent timelines,
linked together through interactions. Autonomous block-
chains canbe realized inside trusted execution environments,
to provide not only blockchain-like integrity and auditability
guarantees, but also to support the storage and querying of
private data. Further, multiple autonomous blockchains
can be linked together through federated transactions to ex-
change data and order mutual operations. These transactions
are amenable to audits and yield tamper-proof witnesses.
The paper describes these mechanisms, and the applications
they collectively enable in detail. Evaluation shows that
this design can achieve high throughput while providing
stronger integrity guarantees than other NoSQL stores.

1 Introduction

Many high-value applications require the reliable and immutable
storage of data across multiple distrusting parties [41, 14, 45].
These applications are characterized by integrity requirements
wherein each party must abide by pre-defined policies. Conven-
tional databases cannot live up to this challenge, as they require
full trust in the database application and host operating system.
Blockchains have recently emerged as a potential platform to

address the needs of these applications. Public/permissionless
blockchains [31, 42], based on proof-of-work or proof-of-stake
consensus, maintain an immutable log of events distributed
across all participants of the system. As a result, they are energy
inefficient, hard to scale and suffer from limited throughput and
high latencies [12]. Further, due to their open and distributed
setting, they cannot be used to store private or confidential data.
Private/permissionedblockchains [7, 34, 30] employ a committee
consensus protocol [8, 25, 20] to maintain the log and append
updates in an orderly fashion. Changes to the data are only pos-
sible after a valid quorum of the committee agrees to do so. This
approach necessarily requires specially designated committee
nodes, often leaks business information and meta-information,

such as which clients interact with which others, at what
frequency, and is limited in performance by bottlenecks in geo-
replicated, large quorums, typically built on quadratic consensus
protocols. Earlier work focused on accountable systems [24, 43],
which ensure integrity by allowing clients to audit the log with
respect to states they have observed previously. But account-
ability mechanisms by themselves can only enforce fork consis-
tency [28, 15], aweaker security property than strongconsistency.
This work presents autonomous blockchains, a novel class of

data stores that provide a self-standing, permanent, tamper-proof
record of all data to facilitate computations over integrity and
confidentiality protected data across organizational boundaries.
A system is self-standing if it does not rely on external validators
or a quorum of replicated machines to ensure its correctness.
The central abstraction provided by autonomous blockchains is
an append-only log [10] of partially-ordered states. Past states
are unchangeable, and new states are only appended to the log.
Building on this foundation, autonomous blockchain instances
can operate independently, as a “blockchain of one,” and offer
strong integrity and confidentiality guarantees.
Autonomous blockchains can be linked together through trans-

actions spanning multiple chains. A new federated transaction
primitive enables connection blockchains. Autonomous block-
chains are thus able to create networks that share designated data
items and invokes computations on each other. This is in stark
contrast to conventional blockchains, which replicate all data
across all nodes, as it minimizes inter-node communication and
enables the network to scalewith the number of blockchain nodes.
Autonomous blockchains support application-defined poli-

cies [40, 21] as well as introspection mechanisms to enable
trust in the policies to allow distrusting parties to interact across
multiple chains. Specifically, autonomous blockchains allow
every object to be associated inseparably with an associated
semantic security policy. Policies are encoded symbolically as
abstract syntax trees, which enables applications to analyze the
policy and establish trust in the future behavior of that object.
Policy enforcement allows guaranteeing confidentiality as well
as integrity. For instance, blockchains may restrict modifications
to a bank account those issued by the specified owner and ones
that do not result in a negative balance.
To enable privacy preserving data queries, autonomous

blockchains support protected function evaluations, read-
only transactions that compute functions over remote private
data [18, 44]. The primary use of this functionality is to compute
a vetted function over private data without revealing the input
data to the remote party. Like with any other transaction, the
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holder of the data retains full control over what can be done with
the data, and both parties, the invoker, and only functions can be
executed on the data if the data holder agrees to do so.
We have fully implemented CreDB, a prototype autonomous

blockchain, backed by secure hardware. Each CreDB node in the
system runs in a trusted execution environment (TEE), provided
by the system’s hardware. The usage of TEEs enables nodes
to trust another participant’s computation without trusting the
administrator of that system. Because each service can run their
own blockchain backed by a TEE, the throughput scales with the
number of nodes in the system. Experiments show that, depend-
ing on the workload, CreDB can process up to 50k ops on a single
machine, and approximately 500 tps on the TPC-C benchmark.
The rest of this paper is structured as follows. The next

section provides the overarching data and computation model
for autonomous blockchains (Section 2). The following two
sections evaluate a full prototype of the system. The evaluation
contains a qualitative part, explaining how to implement several
sample applications (Section 3), and a quantitative component,
describing the impact our execution environment has on the
performance of the system (Section 4).

2 The Autonomous BlockchainModel

At a high level, every autonomous blockchain implements a
secure database using a trusted execution environment (TEE) that
clients, as well as other nodes, can connect to. Each blockchain
instance has its own timeline, datastore, and set of connected
nodes. An autonomous blockchain connects to other chains to
create a network across which data can be shared, and functions
can be invoked, securely. Clients connect through one ormultiple
such blockchains and do not need special hardware support.
This enables porting legacy database applications to this new
abstraction and provide them with stronger integrity guarantees.
Nodes and clients rely on a public attestation service to ensure
integrity and authenticity of database nodes. Attestation services
provide a public-key infrastructure to ensure the authenticity of
parties but do not gain access to private data. This architecture,
as well as permissioned and permissionless architectures, are
visualized in Figure 1.
Applications are written against an API that is a superset

of a transactional key-value storage API. The most notable
additions are timeline inspection, secure semantic policies,
witness generation, and protected function evaluation, which we
discuss below after we provide the basic object and event model
on which the system is based.

2.1 Assumptions and AttackModel

Following previouswork [3]we assume a powerful attackmodel:
an adversary might have root access to the database server. This
includes full control over the scheduler, the file system, and
network communication. The attacker may tamper with the
hardware, except for the CPU itself.
We further assume that clients mistrust and database operators

may distrust other parties in the system. This means principals

need assurance that data can be modified only by parties they
specify. Further, they demand control over what information is
leaked to other parties, including the database administrator.
Autonomous blockchains do not rely on a single implemen-

tation or a single source of trusted hardware. An autonomous
blockchain can be vetted by auditing their source code and
verifying the running binary to correspond to this source code.
The federated model allows for multiple implementations of the
same protocol to coexist on the same network.
However, unlike previouswork, we assume that participants are

economically incentivized to keep their systems up and running.
We believe this is a realistic assumption most businesses already
provide strong liveness guarantees for their services.

2.2 Objects and Transactions

Autonomous blockchains expose a flexible object model that
accommodates unstructured, as well as structured, data. Objects
are collections of attribute-value pairs, where attributes can have
types such as lists, dictionaries, binary data, and primitive values,
which consist of integers, floating point numbers, and strings.
Binary data can contain executable code representing stored
procedures. Each object belongs to a collection (similar to tables
in relational datastores).
Each blockchain maintains a partially-ordered log of trans-

actions, each relating to one or more objects. As such, for each
creation, update, or deletion of an object, the ledger holds a record
of a corresponding transaction. Transactions store the new values
of all updated objects. In the case of a deletion, the new value is
a tombstone entry⊥. Transactions relating to the same object are
arranged in a total order to guarantee linearizability [17]. Further,
in case events are created by a transaction that spans multiple
objects, an event may also capture the dependencies between
versions of different objects. Transactions are further able to
encode read and write sets of objects on remote timelines, which
is a necessity for cross-node collaboration. Crucially, events that
are unrelated are not ordered with respect to each other.

2.3 Protected Function Evaluation

Another key primitive supported by autonomous blockchains
is protected function evaluation (PFE). PFE enables parties to
invoke a custom function on a remote node in a secure execution
environment guarded by the TEE. This way, data protected by
the TEE remains private to the trusted environment, and only the
designated result of the function call is revealed to the caller.
Since computations on private data have the intended goal

of retrieving some information extracted from that data, they
need to be vetted to ensure that this leakage is permissible to all
parties. Autonomous blockchains employ two mechanisms to
perform this vetting. First, before execution of a function, both
the calling and the executing parties must approve the function.
The executing party needs to ensure that no private data is leaked
and that the function execution does not take up an unreasonable
amount of resources. This can be done by checking the functions
hash against a whitelist or by analyzing the AST of the function.
Much past work concerns itself with the analysis of function
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Figure 1: The autonomous architecture compared to permissioned and permissionless blockchains. Instead of one global ledger,
autonomous blockchains form a network of independent ledgers.

properties, including for information leakage [13] and informa-
tion flow [26], so the mechanisms of this vetting are beyond the
scope this paper. In addition, every single object retrieved during
a PFE has its semantic security policy checked on every access.
After successful execution, the calling party receives a witness

containing a function identifier and its result. Autonomous
blockchains identify functions through the hash of their byte-
code. The witness is signed by a persistent key associated with
the blockchain instance of the executing party.
This design imposes minimal structure on witnesses. In

particular, it deliberately leaves freshness guarantees up to
applications – autonomous blockchains do not purport to provide
a global clock or a total order of events. The critical observations
behind this decision are threefold. First, no single notion of
time can serve every application. Some applications may
operate on a sub-microsecond granularity, which could entail
inordinate overheads, while others keep track of events in a
more coarse-grained manner. Second, even if there was a time
granularity that one could pick for most applications, current
technologies for providing a trusted time source into a secure
execution environment provide much weaker guarantees than
the TEE itself, because they rely on additional hardware outside
of the CPU die [11]. Finally, it has been our experience that most
applications can be implemented using simple happens-before
relationships between affected objects.

2.4 Semantic Security Policies

Semantic security policies enable applications to associate
application-specific constraints with an object. These policies
are inseparable from the object to which they belong and
inviolable even by the principal controlling the database instance.
To access the database, a user must necessarily go through the
blockchain’s policy enforcement engine mandated by the TEE.
Thus, even an attacker who takes over the database cannot

subvert the access policies associated with objects. In case of
accessing a previous version of the object, that version’s policy
and state will be used to make an access control decision.
Each autonomous blockchain maintains a registry of identities,

which can be leveraged by policies to make an access decision.
Identities are tuples consisting of a human-readable name and a
public key. This registry is used to prevent man-in-the-middle
and impersonation attacks. We assume a public key infrastructure

(PKI) that nodes can rely on when connecting to previously
unknown parties.
Identities are inseparable from the associated authenticated

communication channel. In particular, nodes cannot change their
identity after a connection has been set up. Costly authentication
and attestation have to be performed only once when setting up
the channel. After successful attestation, policies can always rely
on the authenticity of the referenced identities.
Policies are specified at the time of an object’s creation and

can be modified after the fact only if the policy permits it.
And changes to a policy are stored in the object’s timeline just
like changes to all other fields of the object. Accesses to an
object’s value in the timeline leading to the evaluation of the
object’s policy at that point in time. To enable this, autonomous
blockchains require policies to be idempotent, i.e., they may not
have any side effects or reference the state of other objects.
Policies use the current state of the object, aswell as information

about the attempted operation, to make access control decisions.
Similar to conventional stored procedures policies have access to
several modules that hold information about the attempted oper-
ation and the object to be accessed. Two modules, in particular,
are only available to secure semantic policies: First, op_info con-
tains information about the operation itself, such as the kind of op-
eration and the proposed change. Second, op_context enables to
retrieve information about the issuing party, such as their identity.
Autonomous blockchains further allow associating a policy

with a collection to enable richer application semantics. Such
collection policies may, for example, specify who can create
or modify any object in the collection. Further, they can
enforce a schema on the data, by rejecting all updates that miss
required fields or contain fields in an invalid format. Collection
policies thus allow to break down application logic into multiple
concurrent objects without sacrificing integrity.

3 Example Applications

CreDB provides a novel programming model for building
high-integrity applications. This section describes multiple
applications to demonstrate the practicality of this model. These
applications leverage server-side program evaluation, both in the
form of stored procedure and policies, to provide rich application
logic on top of CreDB. Together with stored procedures, policies
enable to implement state machines in the form of an object.
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Stored procedures define possible state transitions,while the poli-
cies restrict when and by whom these transitions can be invoked.

3.1 Checking Credit History

Financial institutions often check the credit history of a potential
new client by querying their banks. However, both the client as
well as their bank might not want to reveal the credit history for
both privacy and business reasons. Currently, third-party credit
score agencies, required to be trusted by all parties, are used to
circumvent this issue. Such an approach might not always be
feasible as it needs such a common trusted party to exist and
usually creates additional fees and pose other vulnerabilities.
CreDB’s PFE mechanism natively accommodates such blind

checks. We built a credit score checker that computes on the
bank’s data without revealing the data itself. This functionality is
stored on the bank’s blockchain instance in the form of a callable
function, that can be vetted by third parties. The bank further
implements a policy that ensures customer data is stored in a
specified format. In particular, the policy ensures that customer
data cannot be arbitrarily changed to ensure the credit checkers
input is authentic.
Both parties check the trusted function for correctness. The

bank ensures that it solely returns the credit score, without
leaking any sensitive parts of the client’s credit history. The party
requesting the credit score inspects the program together with
the database policies to certify no data can be omitted or changed
from the credit check.
The credit checker function first queries the client’s bank

to retrieve all transactions corresponding to the client. After
executing PFEs on the client’s banks, it will check the client’s
overall balance. In our implementation, this checker will
calculate the overall balance of the account and further look for
any periods of bad liquidity. In a real-world system would use a
more sophisticated mechanism in place.

3.2 Micropayments

Payment services can wire micropayments using a network
of CreDB nodes. In such setup, each service maintains its
own blockchain instance and connects it to nodes of banks it
conducts business with. Each blockchain implements a simple
double-entry booking system, which requires two collections:
liabilities and assets. The liabilities collection keeps a record
of all value stored on the local blockchain by clients and remote
banks. assets reference remote accounts of that bank stored
at other institution. An additional collection, programs, holds
stored procedures that allow authorized parties to move value
as well as data analysis. Policies further ensure that assets and
liabilities can only be modified by authorized programs and the
authorized programs themselves cannot be modified at all.
Moneycan thenbemovedbetweenaccounts on the sameservice

and accounts on remote services, without the reliance on a third
party. To achieve this, two programs are stored on each block-
chain: move_locally and move_remotely. move_locally directly
modifies two entries in the liabilities-collection to transfer value.

The program executes in the form of a server-side transaction to
ensure atomicity and isolation of account balance changes.
Moving money between accounts on two different payment

services is achieved through the move_remotely-program. The
program requires three arguments, the source account, the
target account, and the target payment service. It then checks
the source account’s balance before looking up the target bank
in the assets-collection. If such an entry exists it will invoke
move_locally on the remote bank, moving money between the
source bank’s account on the remote bank and the target clients
account. Like its local counterpart, the program relies on a
transaction ensure isolation and atomicity.

4 Experimental Evaluation

We implemented and evaluated fully-functional prototype of an
autonomous blockchain in the form of CreDB. The prototype is
implemented in about 25k lines of C++ code. Themain takeaway
from the result in this section is that while the overheads associ-
ated with this kind of secure hardware are significant, they can be
mitigated using efficient implementation and paging techniques.
The prototype uses version 2.1.2 of the Intel SGX SDK and is

compiledusingGNUg++7. Evaluation is doneusing twokindsof
hardware. First, a big configuration that provides 32GB of RAM
and an Intel Core i7 6700KCPUoffering 8 logical cores. Second,
a medium configuration providing 16GB of RAM and an Intel
Xeon E5420 CPU offering 8 logical cores. Both configurations
run Ubuntu 18.04 based on Linux 4.15. For all experiments,
except 4.2, a single server is hosted on the big configuration
while clients execute across multiple medium configurations.

4.1 Transactional Performance

We expose CreDB to a TPC-C workload and compare it to a
version of CreDB that doesn’t run in SGX. The experimental
setup contains four warehouses and a dataset of about one giga-
byte. Intel will most likely provide hardware with much larger
EPC sizes in the future. We thus assume that the chosen dataset
size is indicative of how future versions of CreDB will perform
on larger datasets. We use py-tpcc1, a Python implementation
of TPC-C, for all measurements. For CreDB, data is stored
normalized. In particular, each order is a distinct object and not
part of the client’s record.
Figure 2a visualizes the observed performance, broken down

for each query type. Each setup was evaluated under the number
of clients that yielded the highest overall throughput. As expected
the version of CreDB that runs without a trusted environment
performs significantly better.
Figure 2b shows both systems, as well as MongoDB, over a

changing number of clients to visualize the impact of limited
amounts of protected memory. We evaluated MongoDB on
denormalized data, as we observed it to perform better than
MongoDB on normalized data. In these experiments, MongoDB
uses theWiredTiger storage engine writing to a memory-mapped

1https://github.com/apavlo/py-tpcc
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Figure 2: Macrobenchmark results

location. Note that MongoDB has no support for ACID transac-
tion and its performance is therefore not degraded by transaction
aborts. The comparison thus solely serves as an ideal baseline.
We observe that each system scales upwith an increasing number
of clients. However, CreDB’s throughput quickly reaches
its peak of about 500tx/s. We pinpoint this limitation to the
fact that once the EPC memory size is exhausted, threads will
start competing for memory. The variant of CreDB without
SGX yields in about twice the performance until concurrent
transactions become the main bottleneck. MongoDB outper-
forms both implementations of CreDB due to the differences
in application semantics described in the previous section. We
attribute the better performance of MongoDB further to a lack of
optimizations for secondary indexes in CreDB.

4.2 Network Scaling

We evaluated how a network of CreDB nodes scales with
the number of servers. Our benchmark is built on top of the
micropayment application sketched in Section 3.2. We allocate
four physical machines of the medium configuration to host
clients for this benchmark. Up to eight server partake in the
network, each hosted on a dedicated machine with a medium
configuration. Because these machines don’t come with the
most recent Intel CPU generation, we run the network scaling
benchmark in simulation mode. Thus, absolute numbers are
not reflective of what is achievable on hardware, but the overall
scaling trend is reflective of the system’s behavior.
In Figure 2c we gradually increase the number of banks and

plot the overall throughput of the system. Client issue requests,
consisting of transferring money from one to another account.
Accounts are located at a remote service with a 20% probability
and thus require cross node collaboration. To support such remote
transfers, all banks in this setup are connected to all other banks.
We observe that the throughput of the system increases with the
number of CreDB nodes. Because the collection of liabilities and
assets can quickly grow large, a single bank can only perform
so many operations. Thus, while federated transactions incur an
overhead when the number of banks is high, the benefit of having
the set of clients split across multiple servers outweighs the cost

of remote function evaluation.

5 Discussion and FutureWork

More expressive object semantics The evaluated prototype is
built to scale with large-scale datasets but does not accommodate
large individual objects. In particular, large objects are not able to
fit inenclavememoryandcannotbeefficiently sharded intomulti-
ple blocks. CreDBcurrentlymitigates this problemby supporting
collection-wide policies, which allow to break down application
logic into multiple objects that are all part of the collection.
Another common problem in databases that this paper does not

address is schema consolidation, where different parties may not
structure their stored objects in the same manner. We envision a
simple type system where objects, both locally and remote, can
be checked against a specification. This can then be used to not
only check the object for a specific structure but also to verify its
policy. Similarly, specifications can check other functions that
are part of the object and speed up PFE, by defining a standard
protocol between multiple nodes.

Side-channel Attacks Side-channel attacks, which is attacks
that observe the application’s behavior through non-standard
communication, such as looking at its CPU or cache usage, are of
constant interest in the security community. Thus, several papers
have addressed how the confidentiality of trusted hardware
enclaves can be broken using such attacks [36]. Most of these
attacks benefit from the fact that weak cryptographic code, e.g.,
where application secrets modify the control flow, is executed
inside the enclave. While preventing CreDB nodes from side-
channel attacks is beyond the scope of the paper, all cryptographic
code in the enclave is implemented using constant-time libraries.
Still, we expect future versions ofCreDBwill need to be amended
as other such side-channel attacks are discovered.
Further, in scenarios where we envision the deployment of au-

tonomous blockchains, there is typically a well-known counter-
party, in a legal relationship, that canbeheld accountable. Wepro-
pose the usage o this system for applications where values do not
exceed theminimumof thecost for anSGXattack (in thehundreds
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of millions of dollars) and the value of the counterparties assets.

6 RelatedWork

Enforcing Policies on Data TEEs are one specific instance
of secure hardware, which has thoroughly been leveraged by
previous work to provide high integrity applications. The Nexus
Operating System and its associated authorization logic [38]
allow enforcing policies on applications, by providing an
operating system rooted in a trusted platform module (TPM).
TPMs require full trust in the computation stack. TEEs, on the
other hand, provide a “reverse sandbox” that shield enclave code
from potentially malicious host operating systems. Thus, CreDB
only requires trust in the CPU and enclave code.
Information flow control is another common technique to

enforce data policies on a programs execution. SIF [9] and
Fable [35] use a combination of static and dynamic information
flow tracking to enforce policies through compiler and runtime.
Fabric [26] extends this paradigm to the distributed setting.
While such techniques can protect data frommalicious code, they
cannot defend from other attackers, and are, thus, orthogonal to
the mechanisms described in this paper.
In a distributed setting, specific Byzantine fault-tolerant con-

sensus protocols can be used to shield a system frommisbehaving
principals [8, 6, 29]. In such an environment, the trust lies in the
network itself and a large fraction of nodes behaving honestly.
Permissioned blockchains have adopted these protocols, which
careful selection of committee members and need a higher
number of replicas than the approach described in this paper.
Further, they do not shield from data leakage and cannot enforce
access controls without substantial additional measures.

Ensuring Data Integrity Tamper-evident logs allow detecting
Byzantine behaviors of storage servers [24, 43] and more
complex applications [16]. While most of these mechanisms
only provide fork consistency, A2M [10] uses trusted hardware
to achieve strong consistency in such a setup. However, even
if an audit mechanism provides strong consistency, to ensure
detection of misbehavior, it requires that clients are honest
and communicate with each other. Further, misbehavior can be
detected only after the factwhich is not a strong enough guarantee
for many applications.
TrInc [22] provides a monotonic incrementer implemented in

trusted hardware. Systems like CreDB can benefit from TrInc
as it helps to protect from staleness attack, for example after an
enclave is restarted. TrInc can also be used as a primitive to build
Byzantine fault-tolerant systems with fewer replicas. However,
it cannot be used to enforce access control to data.
Proof of Retrievability (PoR) [19, 37] allows verifying that a

remote service indeed holds a dataset. PoR assumes a single
client and thus is not suitable for some of CreDB’s use cases.
One possible application for PoR in CreDB would be to verify
replication of encrypted data on a third party.
Concerto [2] is a datastore that achieves strong consistency

using server-side integrity verification. Due to batch verification,
this approach achieves much higher performance than other

mechanisms [23]. However, Concerto ensures only data integrity
and does not guard the data from unwanted accesses. Guar-
dat [40] shields data from malicious applications by enforcing
policies in the storage layer. CreDB takes this concept a step
further and enforces policies using trusted hardware.

Encrypted Databases If policy enforcement is not a require-
ment, i.e., users trust each other, operating on encrypted data
might be sufficient to achieve confidentiality. Maheshwari et
al. [27] presented one of the first encrypted databases. Their
system stores hashes of the encrypted data in a small trusted
hardware module to protect from tampering.
CryptDB [32] and Monomi [39] rely on homomorphic encryp-

tion of data. To make such a scheme efficient CryptDB does not
encrypt all data and only supports a subset of the SQL language.
TrustedDB [4] and Cipherbase [1] overcome this limitation
by running queries on encrypted data using a trusted hardware
module. All of these systems, to our knowledge, assume that
clients trust each other. In contrast, the policy enforcement and
accountability features in CreDB are designed with multiple
distrusting clients in mind.

Protecting Applications and Data using TEEs Previous
work demonstrated how to run mostly unmodified applications
in trusted virtual machines [5] or containers [3] executing in a
TEE. On a high level, the main difference between these systems
and CreDB is the choice of abstraction. CreDB can provide
applications with a trusted storage system, without having to
execute the application itself entirely in a trusted environment.
Systems build on top of the CreDB API may thus yield in higher
performance, with the tradeoff that the application has to be
ported to this new API.
Ryoan [18] and Opaque [44] explore protecting data that is

processed in the cloud using TEEs. The former allows a static
network of enclaves to process each other but does not provide a
mechanism for durable tamper-proof storage of data. The latter
provides an efficient mechanism for read-only queries on private
data. CreDB leverages a policy system similar to Royan with the
addition that it has a notion of identities. Unlike both previous
systems,CreDBfurtherallowsforadynamicnetworkofenclaves.
EnclaveDB [33] and PESOS [21] provide similar mechanisms

as Cipherbase and TrustedDB but implemented using Intel SGX.
Similar to our evaluation both systems yield better performance
than the usage of dedicated HSMs. EnclaveDB is currently lim-
ited to a set of clients and transactions specified at compile time
of the transaction. Further, to our knowledge, it does not support
federation of database nodes or timeline inspection. PESOS is
a low-level object storage system yielding high throughput by
relying on trusted storage technologies, a mechanism CreDB
could leverage as well.

7 Conclusion

This paper introduced autonomous blockchains, a novel class of
datastores providing an immutable, eidetic ledger of all changes
made to the data. We believe that autnomous blockchains provide
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every desired property of conventional blockchains, and do so
without reliance on third parties, high energy consumption, or
leakage of private data.
Finally, this work demonstrated that CreDB allows building

high integrity distributed applications with relatively low effort.
Benchmarks show that this approach can handle hundreds of
complex transactions a second on a single node. We conclude
that CreDB’s design yields high performance compared to
state-of-the-art permissioned and permissionless blockchains.
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